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Abstract

First collect some information, then choose an action. In such contexts, apparent

mistakes may in fact be optimal if information acquisition is costly. But when can an

observer conclude that a mistake was not optimal? I investigate the causes of mistakes

in a novel online experiment with an intent-to-collect information stage. I test the

axioms of the costly information acquisition model of Caplin and Dean (2015) and

estimate within-subject bounds on attention costs. Optimal inattention explains most

observed mistakes, but same-day dynamic inconsistency also appears to be a cause of

mistakes.
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1 Introduction

Gathering information can be costly, yet it helps inform decision-makers (DMs) about avail-

able options. If the cost of gathering information exceeds its benefit, it is optimal for a DM

to make choices under incomplete information. For example, overpaying is optimal when the

expected cost of locating a lower price exceeds the potential savings.

The theoretical literature on attention describes the process by which DMs gather infor-

mation and make choices. Two central papers in this literature are Sims (2003) and Caplin

and Dean (2015), which introduce generalized models of rational inattention. In these mod-

els, a DM chooses whether to collect or not collect information based on the relative costs and

benefits of applying attention to collect information. While the attention choice is optimal

ex ante, it may lead to “mistakes” in the actual choice ex post. In line with the literature,

I use “mistake” to denote an action that does not maximize a DM’s expected payoff under

complete information, acknowledging that the ex post mistake may be ex ante optimal under

incomplete information.

The objective of this paper is to identify the various causes of mistakes, classifying them

as ex ante optimal or suboptimal in the process. I conduct an online experiment in which I

divide the choice process into three stages: a participant’s initial intent-to-collect information,

their actual information collection, and their application of that information to choose an

action. Analyzing where in the choice process mistakes occur enables me to classify them as

ex ante optimal or suboptimal, and determine the causes for each.

This paper contributes to the literature on costly attention by demonstrating the benefit

of observing intent-to-collect information and the role of dynamic inconsistency in generating

mistakes. In an online experiment, I separate the typical theoretical information collection

stage into distinct intent-to-collect and actual collection stages, providing more granular

choice process than data than was available in earlier experiments. The experiment allows

participants to deviate from theoretically predicted behavior, allowing me to observe subop-

timal mistakes at each of the three stages of the choice process. These mistakes can appear

in the:

1. Intent-to-collect stage: Costly inconsistencies can occur across choices, for example
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suboptimal inattention occurs when a participant expresses an intent-to-not-collect for

one prize value while also expressing an intent-to-collect for all smaller prize values.1

2. Collection stage: dynamic inconsistency occurs when a participant collects less infor-

mation than their expressed intent-to-collect.

3. Prediction stage: ineffective attention occurs when a participant collects enough infor-

mation to identify the optimal action but fails to choose it.

Although a single participant mistake can always be attributed to optimal inattention

by assuming sufficiently high attention cost, a set of choices made by a participant implies

bounds on their attention cost. These bounds can be used to rule out optimal inattention by

testing whether a participant’s choices align with the axioms of the costly attention model

Caplin and Dean (2015), which are necessary and sufficient conditions for a set of observed

choices to be generated by optimal decision-making under generalized attention costs and

information benefits. These conditions are further explained in Section 2.

The experiment consists of 10 paid rounds of a state-prediction task, with each round

featuring two states that are equally probable ex ante, {R = red circle, B = blue triangle}.

If a participant correctly predicts the state, they win a monetary prize. Participants can

randomize their prediction immediately and incur no time cost, or they can incur time cost

to collect information that will reveal the state. The experiment provides information that

is structured as a Poisson process: participants who choose to collect information must

pay attention by clicking a button every 10 seconds until the state is eventually revealed.

Participants can stop collecting information at any time. A participant who collects some

information but stops before revealing the state incurs unnecessary time costs, and such

behaviour is dynamically inconsistent if the marginal cost of collecting information is constant

across time. In Section 5, I relax the constant time-cost assumption and confirm dynamic

inconsistency as a much more convincing explanation for early stopping than convex time

costs.

1Suboptimal attention also occurs at this stage but is not a focus of this paper. Suboptimal attention
occurs, for example, when a participant expresses intent-to-collect for one prize value while also expressing
intent-to-not-collect for all larger prize values. Suboptimal attention cannot cause a mistake, but it may
precede a mistake made in a later stage.
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Participants make an information-collection choice for 20 prize values in the first stage

of each round. In each round, one of the 20 prize values is randomly selected as the choice-

that-counts, and a participant’s first stage choice for that prize value is implemented. With

these choices I estimate bounds on a participant’s attention costs and use these bounds to

classify information collection choices as ex ante optimal or suboptimal. I identify optimal

inattention as the cause of 73% of observed mistakes.

The second stage is the actual information collection. Every 10 seconds, a prompt is

randomly drawn from a finite set of prompts and the state associated with that prompt

is displayed. One prompt reveals the state, and all other prompts are useless and do not

affect posterior beliefs. Participants can collect this prompt-state information in a table

by clicking a button, but failing to click before the next prompt is displayed prevents the

information from being collected. Participants can stop collecting information at any time

and use this table of collected information to inform their prediction. Dynamic inconsistency

occurs when a participant stops collecting information before drawing the relevant prompt

despite previously stating an intention to collect information for that prize value. I identify

dynamic inconsistency as the cause of 9% of mistakes.

In the third stage, participants can at any time choose to randomize their prediction of

the state or use the information collected in the second stage to predict the state. Ineffective

attention occurs when a participant has gathered the relevant information in the second stage

to make the correct prediction but either chooses to randomize the prediction or makes the

wrong prediction.2 I identify ineffective attention as the cause of 13% of mistakes.

There are two variations of the third stage: the automatic treatment and the manual

treatment. All participants complete five rounds of each treatment, enabling estimation of

within-subject treatment effects. In the automatic treatment, participants do not make any

predictions of their own and instead the computer chooses optimally on their behalf using

the information a participant collected in the second stage table. In the manual treatment,

participants are required to make a prediction. Observing a participant’s intent-to-collect

information across the two treatments allows me to estimate their attention cost as a sum of

2A less costly form of ineffective attention occurs when a participant has not collected information that
reveals the state but chooses to predict R (or B), forgoing 1pp of expected value by not randomizing.
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time cost (which affects both treatments) and cognitive cost of collecting information (which

affects only the manual treatment). I find that participants choose to collect information at

similar rates across the automatic and manual treatments, suggesting cognitive cost is small

relative to time cost. Adjusting for beliefs about mistakes, participants prefer collecting

information in the manual treatment.

To summarize the experimental results, participant choice data is highly consistent with

the axioms of Caplin and Dean (2015). The model imposes 2300 testable conditions on a

participant’s choices, and 41% of participants make choices that satisfy all 2300 tests. In fact,

for the median participant fewer than 2% of their choices are inconsistent with the axioms,

implying that participants make attention choices as if they have a known attention cost

function. Moreover, 98 of 101 participants choices are significantly closer to the costly infor-

mation representation of Caplin and Dean (2015) than randomly generated choices would be.

Optimal inattention, suboptimal inattention, dynamic inconsistency, and ineffective atten-

tion account for 73%, 5%, 9%, and 13% of mistakes, respectively. Dynamic inconsistency has

not been frequently discussed in the costly attention literature, but this experiment makes

clear that it should be accounted for even in simple contexts and even if expected attention

costs are in the range of one to thirty minutes.

Related literature

Many economic models of decision-making beginning with Sims (2003) focus on the optimal

choice of information collection and subsequent action for a DM with a bounded or costly

ability to obtain information. Sims’ DM makes an information choice modeled as a reduction

in Shannon entropy, and this modeling approach has been expanded by Caplin et al. (2022)

and used by Matejka and McKay (2014) who derive rational inattention microeconomic

foundations for the multinomial logit as a model of discrete choice probabilities.3 Modeling

information as Shannon entropy is limited in its generality, and theorists have expanded the

literature to consider broader types of attention choices including random attention (Cattaneo

et al., 2020; Aguiar et al., 2023), consideration sets (Manzini and Mariotti, 2007, 2014), and

3This contrasts McFadden (1973) who had originally founded the multinomial logit model as resulting
from i.i.d. unobserved errors on consumer utility.
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sparse attention (Gabaix, 2014; Caplin et al., 2018; Enke, 2020). I am agnostic to the specific

formulation of attention costs so I build testable conditions using the axiomatic approach of

Caplin and Dean (2015), whose general attention cost function K() can incorporate all of

these attention cost formulations.4

This experiment was inspired by the approach of Dean and Neligh (2023), a working

paper of which was available prior to this experiment’s design. Dean and Neligh also asked

participants to discern a binary state using red and blue elements. My experiment expands on

their design because I instead directly measure the intent-to-collect information in a separate

first stage. Like the resume study by Bartoš et al. (2016), I rely on button clicks to directly

measure attention in the second stage, which is an inexpensive alternative to eye-tracking

and other costly physiological measures of attention. The separation of the first two stages

allows me to identify dynamic inconsistency as a source of mistakes, and my data provides a

clear separation between inattention and ineffective attention.

In a lab experiment with similar goals to this paper but a different attention task (stating

the number of dots on a screen, knowing there are between 38 and 42 inclusive), Dewan

and Neligh (2020) find “evidence on continuity and convexity of costs is mixed”, as they

“cannot reject that 29 of 42 responsive lab subjects (69.0%) have discontinuities in their

response functions”, noting “observing a discontinuity in the performance function indicates

a violation of convexity”. I also find little evidence of convex time cost using choice time

stamps and intent-to-collect choices, but I did not set out to test convexity ex ante and so

withhold those exploratory analyses for Discussion Section 5.

The paper proceeds as follows. In Section 2 I outline a model of costly attention and

derive testable conditions the model of Caplin and Dean (2015) imposes on experimental

data. In Section 3 I describe the three-stage experiment design, and in Section 4 I report the

results. In Section 5 I discuss two alternative ex post explanations – convex time costs and

a preference for choice agency – and conclude.

4See also Caplin and Martin (2015) for a Bayesian Expected Utility approach to an NIAS-driven model.
This branch of the theoretical literature has continued with Hébert and Woodford (2021, 2023) and Caplin
et al. (2022), theories published after the design of this experiment that are worthy of experimental economists’
attention.
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2 A model of costly attention

Consider a DM who has the option to gather information at a cost before making a choice.

In many of the aforementioned theories of costly attention this problem is approached as a

two-step process: first, the DM chooses an information structure (defined below) at a cost;

second, they select the action with the highest expected benefit based on the posterior beliefs

formed by the information structure. In this section I apply the notation and approach of

Caplin and Dean (2015) to a binary state-prediction task with discrete attention choices and

derive testable conditions from their model.

Model primitives

There are two equally-likely states of the world ω ∈ Ω = {R,B}. I model the choices of

a who DM will win a monetary prize P if they correctly predict the state, and this DM is

assumed to have a utility function over prizes u(P ) ∈ R with preferences that permit an

expected utility representation. The DM has a correct prior belief µ(R) = µ(B) = 1
2
. The

DM updates their belief to posterior γ(R) using an information structure π that maps from

the true state to a distribution of posteriors about the state: π : Ω → ∆Ω.

The set of information structures available to the DM at any time is restricted to be

binary: Π = {π0, πL}, where π0 represents the uninformative information structure that

returns the prior belief immediately, and πL represents an information structure that reveals

the state at a random time by randomly sampling from a Poisson process with parameter

λL. This Poisson process is characterized as an opportunity to sample (iid with replacement

every 10 seconds) from the set of all prompts of length L, one of which reveals the state and

the remaining 2L − 1 of which do not affect the posterior.

There are two treatments T ∈ {automatic,manual} that restrict how the DM enters their

prediction: the automatic treatment restricts the DMs prediction to that which is implied by

their posterior belief (eliminating the possibility of some types of mistakes), but the manual

treatment allows for prediction mistakes.

A decision problem A is defined by a prize value P , a prompt length L, and a treatment

T . The set of possible decision problems is F = P × L × T . The gross benefit of an
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information structure G maps a decision problem and an information structure to a real

value: G : F × Π → R. The DM has some expected attention cost K : Π → R, which is

unobserved but assumed to be known by the DM. I assume that K(π) is weakly increasing

in L, as the value of L determines the expected time to observe the state.

After choosing an information structure the DM has three available actions: a ∈ A =

{red, blue, guess}. The action-state pair (a, ω) produce a realized utility payoff a(ω) ∈ R with

utility value u(a(ω)). The nature of the decision problem implies u(red(R)) = u(blue(B)) =

u(P ) and u(red(B)) = u(blue(R)) = u(0). A DM who chooses a = guess wins prize P with

a probability of 51% regardless of the true state, so u(guess(ω)) = u(P ) with probability

51% and u(guess(ω)) = u(0) with probability 49% ∀ω ∈ Ω. The 51% prize probability

implies choosing a = guess is the unique payoff-maximizing action for an expected-utility-

maximizing DM whose belief has not changed from the prior.

Costly information representation

The model implies that in each decision problem A = (P,L, T ), a DM chooses π ∈ {π0, πL}

to maximize the ex ante expected net benefit E
[
G(A, π) − K(π)

]
, then forms a posterior

γ(R) ∈ {0, 1
2
, 1} and chooses a ∈ A = {red, blue, guess} to maximize expected utility.

The theoretical literature describes the combination of decision problems and choice data as

state-dependent stochastic choice (SDSC) data, which assumes that a theorist observes the

probability a DM chooses action a in decision problem A when the state is ω for a collection

of decision problems D ⊂ F .

The primary theoretical contribution of Caplin and Dean (2015) is their derivation of

two testable conditions that are necessary and sufficient for SDSC data to have a costly

information representation. First, each final action choice must be optimal considering the

posterior, a condition known as No Improving Action Switches (NIAS, defined in Appendix

A). Second, a DM’s choices to gather information cannot be restructured across problems to

yield greater expected information benefits at no additional attention cost, a condition known

as No Improving Attention Cycles (NIAC, defined in Appendix A). If a DM’s SDSC data have

a costly information representation, the DM is behaving as if they have a known attention

cost function and optimally choose information and actions given this function. Those with
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costly information representations have their choices modeled precisely with the two-stage

limited attention models. Any mistake by a DM with a costly information representation

must be optimal inattention.

A SDSC data set has a costly information representation if the DM:

(i) makes ex ante optimal choice of attention structure π given expected costs and benefits:

π ∈ argmaxπ′∈Π{G(A, π′)−K(π′)}, and

(ii) chooses an action a that is optimal given the posterior formed with observed information:∑
ω∈{R,B} γ(ω)u(a(ω)) ≥

∑
ω∈{R,B} γ(ω)u(a

′(ω)) for all a′ ∈ A.

3 Experimental design

Here I introduce a three-stage experiment to collect incentive-compatible SDSC data that

permits within-subject tests of the costly information representation outlined in Section 2.

The experiment decomposes the step of choosing an information structure into two separate

stages: intent-to-collect information and actual information collection. The final stage of the

experiment is action selection, which is standard in this literature.

In each round of the experiment participants view a sequence of binary elements, called

a prompt, and choose whether to gather information before predicting the binary element

that follows, called the state. The experiment frames this as a chance to predict the binary

element (either a red circle or blue triangle) following the prompt, with participants receiving

a monetary reward for each correct prediction.

Participants can complete the experiment at their own pace over a three-day period.

This design choice provides several advantages in terms of evaluating participants’ choices

and assessing the value of time saved. By allowing participants to complete the experiment

at their convenience, it is expected that they will choose times when their opportunity cost

is relatively low, suggesting that the bounds I estimate can be interpreted as lower bounds.

Had this experiment been conducted in a lab, the relative benefit of saving time by choosing

a = guessmight arguably be zero if participants must wait for others to finish before receiving

payment and exiting the lab. In this remote setup the perceived value of time saved might

be higher as participants can allocate their time savings without lab constraints.
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This experiment design enables the identification of four causes of mistakes: optimal

inattention, suboptimal inattention, dynamic inconsistency, and ineffective attention. In the

first stage, participants may choose not to collect information – this choice is considered

optimal inattention if it is rational given the attention costs implied by other attention

choices, and suboptimal inattention if the choice needs to be dropped for the remaining data

to satisfy a costly information representation. In the second stage, participants might stop

gathering information before acquiring any information that affects beliefs, and I classify this

as dynamic inconsistency. In the final stage, participants may fail to make an optimal choice

despite having previously received a prompt that perfectly reveals the state, which I classify

as ineffective attention. Figure 1 depicts the three stages from a participant’s perspective

and my interpretation of mistakes at each stage.

First stage: intent-to-collect information

A participant who chooses the inattentive information structure π0 is assigned a random pre-

diction immediately that has a 51% chance of winning the prize. Alternatively a participant

may choose the attentive information structure πL to randomly draw prompts of length L

and record the states that follow each draw before making a prediction. The gross benefit

of choosing πL instead of π0 is an increase in the probability of receiving a prize from 51%

to 100%. Participants make this binary intent-to-collect choice for each of the 20 different

prize levels P = {$0.25, $0.50, ..., $4.75, $5.00} in each of ten paid rounds with no feedback

(i.e., 200 choices).

The expected time to reveal the state is 10(2L) seconds with L ∈ L = {3, 4, 5, 6, 7}. A

participant faces each prompt length L twice, once in the manual treatment and once in the

automatic treatment. In the manual treatment only, participants report what they believe is

their personal probability of ineffective attention (q(π) ∈ R) using an incentive compatible

binarized scoring rule Karni (2009); Holt and Smith (2009),5 and in Section 4 I use these

beliefs to provided an estimate of cognitive cost that controls for expected mistakes.

5See Schotter and Trevino (2014) for a review of experimental belief-elicitation mechanisms.
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Second stage: information collection

In the second stage, the experiment software draws a random prompt with replacement

every 10 seconds and reveals the associated state. A participant can collect this information

in a data table but must be attentive to do so. The participant has 10 seconds to add

this observation to a table using a button click. If they miss this 10 second window, the

observation can no longer be recorded. The data table is organized to mirror the prediction

task, presenting every possible prompt and counting the frequency of observed red and blue

states associated with each prompt. Within a player-round it is impossible to observe both

red and blue states for a single prompt so each row of the frequency table has one cell that

is fixed at zero observations.6 There is no time limit on collecting information, but because

the state is revealed once the prompt of interest has been observed once there is no benefit

to collecting more information.

The prompt length L increases from three to seven elements across rounds, doubling

the expected time to reveal the true state with each additional element. If a participant

chooses to collect information they are shown a randomly drawn prompt every 10 seconds,

with the subsequent binary element revealed. These prompts are randomly selected with

replacement from all binary sequences of length L. If a randomly drawn prompt matches the

round’s relevant prompt, the state is revealed. There is a 1
2L

probability the new prompt will

update the posterior to γ(R) ∈ {0, 1}, and a 2L−1
2L

probability the new information leaves the

posterior unchanged at γ(R) = µ(R) = 1
2
. Thus, the ‘time to receive the prompt revealing

the state’ follows a Poisson process with parameter λL = 1
10(2L)

, with L ∈ {3, 4, 5, 6, 7}

implying λL ∈ { 1
80
, 1
160

, 1
320

, 1
640

, 1
1280

}. It is not feasible for an optimizing participant to use

the provided information in unanticipated ways that improve their gross benefits, as Zhong

(2022) proved that a Poisson process is the optimal information structure for a DM in this

environment.

When a participant fails to add an observation to the table with a click, there is a

discrepancy between the information that has been presented and the information that has

been collected. If a missed observation would have revealed the state, the ‘true’ posterior

differs from the ‘observed’ posterior that is formed using only the recorded observations in

6See the third panel of Figure 1 for an example.
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the data table. In such cases, I classify participants who could have collected information

that revealed the state but failed to do so as demonstrating ineffective attention.

Third stage: translating information to action

The i.i.d. nature of the Poisson information flow restricts the posterior space to three possible

beliefs: γ(R) ∈ {0, 1
2
, 1}, and γ(R) = 1

2
is the only Bayesian belief until the relevant obser-

vation has been drawn because the prior belief is µ(R) = 1
2
and all other prompts have zero

information about the state. A DM chooses an action a ∈ {red, blue, guess} to maximize

E

[
G(A, π|γ)

]
. Since there are only three plausible posteriors and three actions, it is easy to

check if a participant chose the optimal action given the available information.

Implementation

The experiment was conducted entirely online over two sessions beginning 7 April 2021 and

25 May 2021. Participants were recruited through the Simon Fraser University Experimental

Economics Lab portal. The experiment took place over three days, starting with a 30-minute

live video conference introduction that covered informed consent, instructions, testing, and

questions. After the introduction, participants could complete the experiment at any time of

their choosing. Participants had access to a short version of the instructions on every screen,

and could revisit the complete instructions at any time.

Out of the 104 participants who attended the introduction and received the show-up

fee, 101 completed the experiment. Participants in the first session faced prompt lengths

that increased by round, and participants in the second session faced prompt lengths that

randomly varied by round. As there were no significant order effects between the two groups,

I pool their results throughout.

On average, participants earned a variable pay of $19.91, spending 34 minutes on infor-

mation collection. A participant who spent no time collecting information would be expected

to earn a variable pay of $6.70 through correct randomized guesses. This means that par-

ticipants earned an average of $23.31 per hour while collecting information. Including the

show-up fee of $7 and comprehension quiz pay averaging $2.30, the average total pay for
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participants was $29.21.7

I programmed the experiment in Python using oTree (Chen et al., 2016) as the underlying

structure to capture data and distribute unique participant links for online participation. I

programmed a custom JavaScript interface for the interactive information collection stage.

Data

Participants completed 10 paid rounds, five in each of the automatic and manual treatments,

and they do not learn the outcome or payoff of any round until all rounds are complete to

limit learning and wealth effects as explanations for changes in behavior across rounds. The

10 paid rounds followed a paid comprehension quiz and two practice rounds with feedback.

The median participant scored 5/6 on the comprehension quiz, and answers were provided

once the quiz was scored.

Each participant i chooses their choice of information structure πi ∈ {π0, πL} in each

decision problem A. There are 10 paid rounds, each round has 20 prize levels requiring an

attention choice. One of the 20 choices is randomly selected and paid in each round.

In the automatic treatment, the computer interprets the information collected by a par-

ticipant and makes the optimal prediction ai ∈ {red, blue} as soon as the state is revealed.

In the manual treatment, participants face the same set of decision problems but must inter-

pret the data and make the choice from ai ∈ {red, blue, guess} themselves. In the manual

treatment only, a participant provides their belief they will make an error in the prediction

stage if they are collecting information using πL, defined as qiL ∈ [0, 1
2
].

Let I iPLT ∈ {0, 1} be the indicator variable equal to 1 if and only if participant i chose

to pay attention when the prize was P with information structure πL in treatment T ∈

{automatic,manual}. I suppress the subscripts for T and i whenever the context is a single

treatment or participant. I refer to a participant’s full set of binary information collection

choices as their attention allocation.

7It is difficult to estimate an hourly wage because players were permitted to leave the experiment and
return at any time during the three-day window, and some players may have taken long breaks between
rounds.
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Testable conditions

Observable choices differ from theorists’ assumptions about SDSC data in meaningful ways.

The utility function u() is not known or directly observed through choice data, and any fi-

nite number of choices implies only coarse observation of the choice probabilities in a given

decision problem. However, experimental data can be richer than a SDSC in some dimen-

sions because I can directly observe the choice of information structure π in each decision

problem and the exact information received. These differences in observables require the

costly information representation axioms to be modified for this context. I modify the NIAC

and NIAS conditions of Caplin and Dean (2015) into the Optimal Action (Oa) and Optimal

Information (Oπ) conditions below to account for these differences between SDSC data and

choice data from an experiment.

Optimal action (Oa) is a property of each decision problem, and requires that the observed

actions are optimal given the posterior beliefs of the DM. In this experiment, there is a unique

optimal action for any given posterior. It is necessary that:

a = guess ⇐⇒ γ(R) =
1

2
(Oa)

a = red ⇐⇒ γ(R) = 1

a = blue ⇐⇒ γ(R) = 0

If condition (Oa) is not met, a DM has demonstrated ineffective attention. The condition

(Oa) is analogous to Caplin and Dean (2015)’s NIAS condition.

Optimal information (Oπ) is a property of the entire SDSC data set generated by a DM

and requires that there could be no gross payoff improvement by reassigning the chosen

information structures across decision problems. The condition (Oπ) is analogous Caplin

and Dean (2015)’s NIAC condition. In a binary information choice environment, the optimal

information condition (Oπ) can be checked through a series of pairs of choices. Each pair of

choices that have the same prize P or prompt length L offer an opportunity for an information

allocation mistake:

IPLT ≤ IP∗LT ∀P, P∗ ∈ P s.t. P < P∗; ∀L ∈ L (Oπ1)
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IPLT ≥ IPL∗T ∀L,L∗ ∈ L s.t. L < L∗; ∀P ∈ P (Oπ2)

To satisfy (Oπ1), if a DM collected information when the prompt length was L for prize

P in treatment T , they must also collect information when the prompt length is L for any

higher prizes in that treatment. To satisfy (Oπ2), if a DM collected information when the

prompt length was L for prize P in treatment T , then they must also collect information

when the prize is P in rounds with shorter prompt lengths L < L∗, because they have a

lower expected time cost.

A DM’s choice data has a costly information representation if it satisfies all the conditions

jointly - (Oa), (Oπ1), and (Oπ2). By checking the (Oa) and (Oπ) conditions in the exper-

imental data, we can determine whether choices can be rationalized by a limited attention

model with a known attention cost function. If both conditions hold, we can classify mistakes

and gain insights into the nature of the attention costs and the decision-making process of

the participants.
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4 Results

The attention allocation is my primary tool for analysis, but participants also provide a

prediction a ∈ {red, blue, guess} and a decision time t in each round. The experiment

records several other timestamps, including when it was first possible to form an informed

prediction, when the player actually clicked to collect prediction-relevant information, and

the posterior at the player’s decision time γt(R) ∈ {0, 1
2
, 1}.

Figure 2 displays the distribution of choices across all rounds. Note that 532 of 1010

observations would be classified as a mistake under complete information, 381 of these 532

were Stage 1 choices to guess rather than collect information and incur time costs.

Result 1: Participants behave as if they have a known attention cost function.

The median participant requires only 2% of their choices to be dropped to satisfy

all axiomatic tests, and 41% of participants satisfy all axiomatic tests without

dropping any data.

A participant’s choices can be rationalized by a costly information representation if they

satisfy equations (Oa), (Oπ1), and (Oπ2):

� To satisfy equation (Oa), participants must choose action a = guess (random guess)

until the moment the state is revealed, and after that time, they must only make correct

predictions.

� To satisfy equation (Oπ1), when participants face prompt length L in treatment T and

choose to collect information with prize P , they must also collect information for any

greater prize values.

� To satisfy equation (Oπ2), when participants face prize P in treatment T and choose

to collect information with prompt length L, they must also collect information for any

shorter prompt lengths when the prize is P in treatment T .
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Optimal information

A costly information representation implies the optimal information conditions (Oπ1) and

(Oπ2) are satisfied for all possible comparisons in a participant’s choice data. Under a

null hypothesis that participants choose the binary IPLT randomly and independently with

probability 1
2
, a failure of (Oπ1) will be generated with probability 1

4
, i.e., when IPLT = 1

and IP∗LT = 0.

There are |P|2−|P|
2

opportunities to fail equation (Oπ1) for any L, and |L|2−|L|
2

opportunities

to fail equation (Oπ2) for any P . With |P| = 20, |L| = 5, and two treatments, this leaves

1,900 opportunities to fail equation (Oπ1) and 400 opportunities to fail equation (Oπ2) per

participant.8

The results show that participants’ attention allocation is generally consistent with the

conditions outlined in equations (Oπ1) and (Oπ2), suggesting that the model is suitable for

the data in this experiment:

� Participants fail only 1.3% of the tests of equation (Oπ1), with 71% of participants

failing none of the 1,900 conditions imposed on the data. This condition requires a

single switch in the first stage choices from not collecting information to collecting

information as the prize P increases within a single decision page.

� Participants fail 7.3% of the tests of equation (Oπ2), with 58% of participants failing

none of the 400 conditions imposed on the data. This condition requires a single

switch from collecting information to not collecting information as the prompt length

L increases across decision pages.

For only three of 101 participants there is a failure to reject a hypothesis of random

binomial data generation in favour of a one-tailed alternative hypothesis of fewer rejections,

implying that 98 of 101 participants generate choice datasets that are significantly closer to

a costly information representation than randomly generated data.9

I construct the predictive success measure inspired by Selten, treating each participant’s

choice data as one observation. This measure takes the proportion of participants whose

8190 conditions per prompt length L * 5 values of L * 2 treatments; 10 conditions per price P * 20 values
of P * 2 treatments.

9The one-tailed test is conducted at a 0.025 significance level.
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choice data perfectly satisfy (Oπ1) and (Oπ2) and subtracts the probability a randomly

generated set of choice data would satisfy the same conditions Demuynck and Hjertstrand

(2019). Overall, 41% of participants satisfy all 2,300 information conditions versus a near

zero probability of a random dataset satisfying those conditions. The Selten score of 41%

being positive suggests a costly information model has predictive success for the attention

allocation data.

Optimal action

The experiment records the exact time when there is sufficient information to make a correct

prediction ti
∗, as well as a participant’s decision time ti and action ai. Since the random

information collecting process is independent across participants, ti
∗ varies by participant.

For a costly information representation to hold, any observed action must be optimal

given the posterior at the time of the action. If a participant makes a choice at a time

t < ti
∗, then they must choose ai = guess because it yields a prize with a 51% probability,

which is higher than the 50% probability obtained with either ai = red or ai = blue. Once

t > ti
∗, the posterior is either γ(R) = 1 or γ(R) = 0, and for these cases (Oa) requires

ai = red and ai = blue, respectively. An (Oa) violation occurs if a participant chooses to

make any specific prediction before the state is revealed, and an (Oa) violation occurs if a

participant randomizes or makes an incorrect prediction after the state is revealed.

There are two information states that could be used to form a posterior: one that uses all

the drawn data (the true information state), and another that only uses the observations that

the player clicked to store in a data table. There is only one marginal violation of (Oa) in

the entire sample when using the true information state instead of the clicked observations,

suggesting that participants were unlikely to use their memory as a replacement for the

observation table. I use the true information state throughout.

Regardless of whether an action is chosen before or after the state has been revealed,

only one of the three available actions a ∈ {red, blue, guess} is optimal, so if action choices

are generated randomly the average participant would fail 2
3
of the 10 (Oa) conditions. The

median participant failed zero of the 10 (Oa) conditions, and the mean number of conditions

failed was 0.77, indicating that all failures were concentrated in a minority of participants.
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Sixty-two of 101 participants (61%) satisfied all (Oa) conditions. If action choices are

generated randomly the probability of one participant satisfying all (Oa) conditions is (1
3
)10 ≈

0. In fact 24% of participants passed all (Oπ) and (Oa) conditions. Therefore, the overall

Selten score is 24%.

Goodness-of-fit

There is a substantial literature on measuring the variation in observed choice datasets from

an axiomatic standard (see Demuynck and Hjertstrand (2019) for a review of measures and

recent advances in their computation). One common measure of a dataset is the Houtman-

Maks Index (HMI), which measures the maximal proportion of choices that can collectively

satisfy every condition of (Oπ1) and (Oπ2) (or analogously drops the fewest observations to

have a consistent dataset). In this experiment, I calculate an HMI specific to the attention

allocation and another one using all choices, which includes the 10 conditions on paid actions

imposed by (Oa).

The median HMI(attention) among participants is 0.99, and the median HMI(all) is

0.98, which indicates that participant choices are highly consistent with a costly information

representation. This consistency suggests that the few observations that fail one of the costly

information axioms may be interpreted as mistakes. For comparison, in a sample of uniform

randomly generated datasets the median HMI(attention) is 0.63.

After computing the HMI for each participant’s attention allocation, there is a set of

observations that if omitted, leaves a dataset that is fully consistent with (Oπ).10 If a dropped

observation was a choice to collect information (IPLT = 1) it is recorded as suboptimal

attention, and if a dropped observation was a choice to be inattentive (IPLT = 0) it is

recorded as suboptimal inattention. Some participants have multiple subsets of the same size

that satisfy the costly information representation axioms, one subset that involves dropping

a 0 and one that involves dropping a 1. These ambiguous cases are not included in the counts

of classified mistakes.

The top row of Figure 3 shows that of the actions categorized as mistakes in the 10 paid

10This omitted set is one interpretation of the set of attention allocation violations a participant made ex
ante, taking the maximal consistent dataset as the true preference.
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rounds, 36 of 532 can be described as errors at the first stage. In these cases a participant

made a choice deemed suboptimal relative to the preponderance of their other intent-to-collect

choices. Of these 36 attention allocation errors, 24 were cases of suboptimal inattention and

12 were cases of suboptimal attention.

Hereafter when discussing the proportion of mistake causes, I use data from the five man-

ual rounds displayed in Figures 4 and 5. The automatic treatment restricts a participant

from incorrectly choosing a = blue or a = red, and thus some causes of mistakes are im-

possible in the five automatic rounds. Only one cause of ineffective attention is possible in

the automatic treatment: a participant can fail to click a relevant observation in the 10-

second window, then stop collecting information and randomize before that prompt is drawn

again.11 This is distinct from dynamic inconsistency, where a participant starts the infor-

mation collecting process but stops and randomizes before the relevant observation is ever

drawn.

Result 2: Seventy-three percent of mistakes are caused by optimal inattention,

but dynamic inconsistency and ineffective attention are also important, causing

13% and 9% of mistakes, respectively.

This experiment was designed to track the information state and the implied posterior

at all times, which allows the differentiation between different causes of mistakes. While

a costly information representation can rationalize many mistakes as optimal ex ante, it

cannot rationalize mistakes resulting from dynamic inconsistency and ineffective attention,

which both occur after the choice to collect information.

Any randomized guess or incorrect prediction is characterized as a mistake in this ex-

periment, as either fails to maximize the gross payoff. However, when attention is costly,

many ex ante choices to randomize are optimal inattention as they optimally trade off the

costs and benefits of attention. If an a = guess mistake is not an (Oa) violation, then a

participant’s action was the best choice given the information state. If the relevant first stage

choice for that round was IPLT = 0, and this observation is not among the subset dropped

in the process of estimating the HMI, it is classified as being caused by optimal inattention.

11This fail-to-click ineffective attention occurred 5 times in the 5 automatic rounds.
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Figure 2: All Choices By Stage
Notes: Choices from 101 participants who complete 10 paid rounds each. Over half (532/1010) of choices

would be interpreted as a mistake if complete information is assumed.

However, if observations of IPLT = 0 needed to be dropped to form a costly information

representation, they are interpreted as suboptimal inattention, as the majority of compa-

rable attention allocation choices imply that participant’s benefits of collecting information

exceeded their costs. Similarly, if the relevant first stage choice for that round was IPLT = 1,

that participant’s choice can be classified as suboptimal attention or optimal attention based

on whether it was included in the largest dataset fully consistent with (Oπ).

If a mistake is also an (Oa) violation, it implies the action was not optimal given the

information state. A mistake where a participant failed to interpret the posterior into the

optimal action is classified as ineffective attention. There are two types of ineffective at-

tention: one when the state was fully revealed and a participant randomized or made an

incorrect prediction, and the other when a participant made an incorrect prediction before

receiving information that would change their prior.

The remaining cause of mistake has a participant choose to collect information but then

choose to randomize in the second stage before any information is revealed. This is a form
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Figure 3: Classifying Mistakes: All Choices
Notes: Of the 532 mistakes across all rounds, two-thirds (357/532) are classified as optimal inattention

and 5% (24/532) are classified as suboptimal inattention. Of the remaining 151 mistakes, 107 were cases

of participants choosing to enter Stage 2 but then choosing to guess before information arrived, interpreted

as dynamic inconsistency. The remaining 44 mistakes were cases of participants who made an incorrect

prediction or who guessed when they had sufficient info to make a prediction, interpreted as ineffective

attention.

of dynamic inconsistency but is not an (Oa) error. These participant’s previous self wanted

to collect information, but when they reached the information collection stage they stopped

collecting early. This experiment was not designed to test whether a participant faced an

unanticipated shock to time costs during the second stage, or if they were previously naive

about their future self, or if there was some other cause of their dynamic inconsistency. But

it is a distinct cause of mistakes worth separating from ineffective attention.

Figure 5 shows that 199 of 272 mistakes (73%) in the manual treatment can be explained

as optimal inattention. Ineffective attention accounts for 36 of 272 mistakes (13%), these are

observations where a participant chose to collect information but then failed to choose the best

action given the information received. Another 23 of 272 mistakes (9%) can be explained as

dynamic inconsistency, these are observations where a participant chose to collect information
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Figure 4: Choices By Stage: Manual Treatment Rounds
Notes: Choices from 101 participants who complete 5 paid manual rounds each. Over half (272/505) of

choices would be interpreted as a mistake if complete information is assumed.

in the first stage and later chose to randomize with a = guess after incurring some time cost

but having collected no relevant information. Only 14 of 272 mistakes (5%) are driven by

a violation of (Oπ) in the attention allocation, these are observations where a participant

made several choices to collect information for lower prizes and one difficult-to-explain choice

to randomize for a larger prize, interpreted as suboptimal inattention.

Result 3: Participants make low-cost mistakes. Observed mistakes are only 30%

as costly as mistakes would be for randomly generated choices.

While any non-optimal action is an (Oa) violation, their expected costs take three different

values, measured as a change in prize probability. If a participant chooses a = blue or

a = red when the posterior γ(R) = 1
2
, her probability of winning a prize decreases from

51% to 50%, for an expected utility loss of 0.51u(P ) − 0.50u(P ) = 0.01u(P ), denoted 1pp.

If a participant chooses a = guess when γ(R) = 1 or γ(R) = 0, her probability of winning

a prize decreases from 100% to 51%, for a loss of 49pp. Finally, if a participant chooses
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Figure 5: Classifying Mistakes: Manual Treatment Rounds
Notes: Of the 272 mistakes within manual treatment rounds, 73% (199/272) are classified as optimal inatten-

tion and 5% (14/272) are classified as suboptimal inattention. Of the remaining 59 mistakes, 23 were cases

of participants choosing to enter Stage 2 but then choosing to guess before information arrived, interpreted

as dynamic inconsistency. The remaining 36 mistakes were cases of participants who made an incorrect pre-

diction or who guessed when they had sufficient info to make a correct prediction, interpreted as ineffective

attention.

a = red when γ(R) = 0 or a = blue when γ(R) = 1, her probability decreases from 100%

to 0%, for a loss of 100pp. Experiment participants make less costly errors than a set of

errors generated by a random dataset. Mistakes costing 1pp account for 75% of participant

(Oa) violations, 22% of (Oa) violations are the 49pp variety, and only 3% of (Oa) violations

are 100pp mistakes. The mean participant (Oa) violation costs 15pp, versus an average cost

of 50pp from a randomly generated dataset. Assuming linear prize utility, this implies that

the average participant violation of (Oa) costs a minimum of $0.39 in expectation while

a randomly generated violation costs more than three times as much, with a minimum of

$1.31.12

12This minimum is based on the unconditional expectation of prize value, but a player in the attention
stage knows that none of the prize values for which they chose to randomize were chosen for payment, so the
expected prize conditional on reaching the attention stage is higher for participants who pay less attention
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It is difficult to assign a monetary value to the cost of a mistake caused by dynamic

inconsistency because rather than failing to maximize the probability of a prize, a participant

failed to minimize their attention costs for a given prize probability. These participants enter

the information collecting stage and incur at least 10 seconds of time cost but ultimately

choose to randomize, which they could have done in the first stage with no time cost incurred.

Result 4: The majority of attention cost is time cost. Estimated cognitive costs

are near zero. Belief-adjusted cognitive costs are negative, implying participants

have a preference to manually make a choice. I interpret a participant’s reaction to

attention costs under an assumption that expected attention cost K(π) can be separated

into time cost T (π) and cognitive cost C(π), so that K(π) = T (π) + C(π). The automatic

treatment suppresses the cognitive requirement as much as possible as a participant needs

only to click a button every 10 seconds and the computer will eventually make a correct

prediction and win a prize with certainty. I normalize whatever cognitive requirement remains

in the automatic treatment to C(π) = 0, and interpret the reaction to expected time across

rounds.

In the automatic treatment, for any prize P and prompt length L, a participant with a

costly information representation will choose to randomize (π = π0 and a = guess) when:

1

2
u(P )−K(πL) < 0 (1)

Likewise, a participant with a costly information representation will choose to make an

informed prediction (π = πL and a ∈ {red, blue}) when:

1

2
u(P )−K(πL) > 0 (2)

In the automatic treatment time cost T (π) can be estimated by observing the switching

point between inattention and information collection as the prize level (P ) increases or the

prompt length (L) decreases. In the manual treatment, we can estimate the overall attention

cost (K(π)) by analyzing the same switching point. By assuming Ki(π) = Ti(π) + Ci(π),

at lower prize values.
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I calculate the implied within-subject cognitive cost as the difference between the attention

cost in the manual treatment and the time cost in the automatic treatment. I normalize

K(π0) = 0 so the cost of being inattentive is zero.

To better contextualize time costs I convert them into dollar values by assuming that the

utility function is linear over the small prize range considered in the study.13

The results show that the majority of attention cost is time cost, with average cognitive

costs near zero. Estimated time costs in the first stage are negatively correlated with time

spent collecting information in the second stage, suggesting that participants are aware of

and responsive to time costs (ρ = −0.45, p < 0.001). Additionally, belief-adjusted cognitive

costs are negative, implying a preference to manually make a choice rather than relying on

the automatic treatment.

A costly information representation implies a cutoff strategy over prizes for any given

prompt length and treatment; the cutoff prize value where a participant begins to collect

information can be estimated by the sum of all first stage information choices for a given

round’s attention cost L. This proxy maintains every participant’s intended probability

of reaching the information collecting stage without selectively dropping any observation,

and identifies the cutoff perfectly for those participant rounds when no observations fail

(Oπ). If
∑

p IPLT = n, this proxy is interpreted as a participant being willing to collect

information for the n largest prizes and not willing for the (20 − n) smallest prizes. This

allows for upper and lower bound identification of attention costs. In utility terms, it implies

1
2
u(p20−n) ≤ T (πL) ≤ 1

2
u(p21−n) ∀n ≥ 1, and 1

2
u(p20) ≤ T (πL) if n = 0. Assuming u(P ) = P

over the prize values, I can estimate a dollar value of time cost from a participant’s first stage

choices in the automatic treatment, and calculate the implied reservation wage.

Figure 6 displays the aggregated estimates of attention and time cost. Average time cost

is positive and increasing in expected time. Average cognitive cost is near zero, implying

indifference between making ones own prediction in the manual treatment relative to letting

the computer predict in the automatic treatment. Participants enter Stage 2 equally often in

manual and automatic rounds, implying time is the primary driver of choice. However there is

13Rabin (2000) showed that linearity over small prizes is not a substantially stronger assumption than an
expected utility representation.
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substantial heterogeneity in cognitive cost, with many participants displaying preference for

manual predictions over automatic, resulting in a negative-valued cognitive cost. A negative-

valued cognitive cost may be interpreted as a preference for choice agency despite the weakly

greater probability of mistake.

Figure 6: Average Time Costs and Cognitive Costs
Notes: Expected time to reveal the state doubles for each unit increase in prompt length. After adjusting
for beliefs about the probability of mistake, the average cognitive cost is negative implying that participants
are willing to collect information with smaller expected benefits in the manual treatment than the automatic
treatment. All of the following tests were conducted with a T-test at 95% significance level: There are no
significant differences in time cost between prompt lengths L = 3, L = 4, and L = 5. Time cost for L = 6 is
significantly greater than time cost for L = 5 and L = 4, but I fail to reject the hypothesis of zero difference
between L = 6 and L = 3. Time cost for prompt length L = 7 is significantly greater than time cost for all
other prompt lengths.

Because there is a non-zero chance of choosing an action that violates (Oa) in the manual

treatment, the gross benefit of paying attention in the manual treatment is weakly less than

in the automatic treatment, and this reduces the prize probability conditional on choosing

to pay attention. In the manual treatment participants report a belief of their own error

rate in an incentive compatible mechanism. The naive and adjusted cognitive costs are

both displayed in Figure 6. Cognitive costs are small in all cases, zero in the naive case

and slightly negative in the belief-adjusted cased. This implies that participants prefer the

manual rounds after adjusting the gross benefit to account for the probability that they
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could make a mistake. This result could be interpreted a preference for choice agency, i.e.,

a preference to complete the puzzle over mindlessly clicking while waiting for a computer to

do so, which I discuss further in Section 5. An equally plausible explanation for this pattern

of choices is that participants are indifferent between the two treatments and fail to include

their mistake probability in their first stage attention choice. In either case, it is the time

cost rather than the cognitive costs acting as the key driver of attention allocation choices.

5 Discussion

5.1 Convex time costs

My interpretation of some mistakes as dynamic inconsistency is founded on an assumption

of linear time costs. The experiment by Brown et al. (2011) calls into question the validity

of this assumption, as they demonstrated that real-time search in a laboratory showed the

same “falling reservation wage phenomenon”, which had been previously documented in

empirical and experimental labor search contexts (Kasper, 1967; Schotter and Braunstein,

1981).Their finding suggests that participants experience convex time cost. Convex time costs

could rationalize both a declining reservation wage and the experiment behavior I labeled as

dynamic inconsistency. Here I explore the evidence in the experimental data for convex time

costs, with special attention on the observations I categorized as dynamic inconsistency (DI)

in the main analysis.

Brown et al. (2011) conduct a reservation wage experiment where new wage offers arrive

at a random time interval determined by a Poisson process. When a new wage offer arrives

participants must state a reservation wage before the value of the new wage offer is revealed.

Brown, Flinn, and Schotter use treatments with a mix of actual waiting and monetary search

costs. Their Wait-No Cost treatment is similar to the experiment in this paper because both

have participants wait an uncertain amount of time before receiving information that could

improve payoffs via a Poisson process.14

In the experiment presented in this paper all time costs are innate instead of incentivized

14Their experiment uses the Poisson parameter λ ∈ [0.05, 0.5], whereas my experiment parameter values
of L and 10 seconds per draw imply λL ∈ { 1

80 ,
1

160 ,
1

320 ,
1

640 ,
1

1280}, a slower Poisson process.
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by monetarily discounting a participant payouts as implemented by the Cost treatments of

Brown et al. (2011). It is reasonable to assume innate time costs are greater in my experi-

ment than in the Wait-No Cost treatment of Brown et al. (2011) because my experiment was

conducted outside the lab with freedom for participants to stop and return later, so partic-

ipants face a meaningful opportunity cost in each moment they are collecting information.

The lab participants in Brown et al. (2011) had to wait in the lab quietly for all participants

to complete all searches before receiving payment so opportunity costs are arguably close to

zero in the early parts of their experiment environment. Brown et al. (2011) found reser-

vation wages declined more quickly for their Wait-Cost treatment than their No Wait-Cost

treatment, so their participants did display a response to innate time costs.

Recall the general model of Caplin and Dean (2015) with attention cost K(π) and gross

attention benefit G(A, π) for decision problem A and information structure π. I now assume

attention cost to be convex in elapsed time t so that Kt(t, π) > 0 and Ktt(t, π) > 0. Under

these assumptions a DM faces a dynamic (rather than static) problem. At every t, the DM

evaluates the expected marginal gross attention benefit of continuing to collect information

relative to the marginal attention cost, implying the existence of some t̄ ∈ {0, 10, 20, ...} at

which it is no longer acceptable to continue collecting information if the state has not yet

been revealed (see Appendix C for a complete derivation). For simplicity I use (DI) to denote

the observations where a participant stopped the information collection stage before revealing

the state, while acknowledging they may not actually represent dynamic inconsistency if time

costs are convex.

Assuming experiment participants have a costly information representation where costs

are convex in time, two testable comparative statics for the experiment data are:

Comparative statics of convex time costs

1. mean(ti|πL, DI) > mean(ti|πL, non-DI)

2. rate(DI|πL, Round r + x) > rate(DI|πL, Round r) x ≥ 1

Notes: Conditioning on πL controls for difficulty and expected time in the information collection stage.

Comparative Static 1 would be apparent in data where stopping information collection

(and being classified as DI) was a result of unlucky information collection causing con-
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vex time costs to exceed some t̄. Comparative Static 1 would be apparent regardless of

whether participants are narrow bracketers of time cost across rounds Ellis and Freeman

(2020). Figure 7 shows a pattern of DI observations stopping significantly earlier than non-

DI observations for all round types. Pooling across rounds, I test a null hypothesis that

mean(ti|πL, DI) = mean(ti|πL, non-DI) and find DI and non-DI have significantly different

mean with a 2-tailed t-statistic value = 2.61. This is strong evidence against convex time

costs because the DI observations quit significantly faster than those who collect enough

information to reveal the state, which is the opposite of what is predicted by convex time

cost.

Comparative Static 2 would be apparent in data where participants have convex time

costs and quit earlier in later rounds as total experiment time accumulates. For accumulated

time to affect decisions requires that participants are not narrow bracketers across rounds.

Figure 8 shows the rate of DI conditional on entering the information collection stage, and

sorts observations by prompt length and instance. The second instance of a prompt length

occurs five rounds after the first instance. The data permit a test of the null hypothesis that

rate(DI|πL, Round r+x) > rate(DI|πL, Round r) x = 5, because identical prompt lengths

were always five rounds apart. There is not a significant difference in the rate of DI in the

earlier versus later rounds. Pooling across all 1st instances of a prompt length and all 2nd

instances of a prompt length, a Fisher exact test fails to reject the null hypothesis of equal

means with a p-value of 0.398. This suggests that convex time costs are not a meaningful

driver of quitting the information collection stage.

There is no evidence to believe convex time costs played a significant role in behavior in

this experiment context, but convex time costs seem intuitive in many contexts and should

continue to be considered especially in more strenuous environments than this online exper-

iment with flexible timing.

5.2 Choice agency

An unanticipated pattern revealed itself in the experiment data: participants quit the in-

formation collection stage early (DI) disproportionately more in the automatic treatment

than in the manual treatment. For every prompt length L ∈ {3, 4, 5, 6, 7} there were
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Figure 7: Average Time by Round Type
Notes: Conditional on entering the information collection stage, dynamic inconsistency (DI) observations stop
earlier than other observations across all round types. A t-test of null hypothesis that mean(t̄|πL, DI) =
mean(t̄|πL, non-DI) is rejected with a t-value of 2.61, indicating that DI observations stopped significantly
earlier than other observations and convex time costs are not likely a driver of DI.

15 or more participants exhibiting DI in the automatic treatment and 8 or fewer partici-

pants exhibiting DI in the manual treatment. Figure 9 shows the rate of DI conditional

on entering the information collection stage, and sorts observations by prompt length and

automatic versus manual treatments. Fisher’s exact test rejects a null hypothesis that

rate(DI|πL, automatic) = rate(DI|πL,manual) with a p-value < 0.001. Once entering the

information collection stage, participants quit much more quickly in the automatic treatment,

suggesting they are more willing to collect information if there is an expectation that they

use it themselves instead of having a computer automatically make the best prediction.

Only the manual treatment permits a participant to enter an incorrect prediction, so the

automatic treatment has weakly greater payoffs than the manual treatment in expectation.

Yet participants stop collecting before receiving valuable information twice as frequently in

the automatic treatment relative to the manual treatment. It seems participants were more
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Figure 8: Rate of Dynamic Inconsistency by Prompt Length and Instance
Notes: Observations are grouped by a participant’s first or second instance of facing prompt length L.
Conditional on entering the information collection stage, the rate of dynamic inconsistency is not significantly
different in later rounds of the experiment when controlling for prompt length. A Fisher exact test fails to
reject the null hypothesis that rate(DI|L, 1st instance) = rate(DI|L, 2nd instance) with a p-value = 0.398.

willing to incur time and attention costs if they were required to make a choice after going

through the click-every-ten-seconds gauntlet, even though that choice created the possibility

of a payoff-reducing mistake.

Previous research has documented a preference for choice agency in both directions: there

are situations where individuals would pay not to choose (Sunstein (2014) gives the examples

of medical care and retirement plans), and there are situations where individuals would pay to

control their choice (Owens et al., 2014; Freundt et al., 2023). This paper provides a new case

of participants paying to control their own choice. Participants in this experiment consistently

incur more attention costs in the manual treatment for weakly lower attention benefits,

implying a utility increase in the manual treatment relative to the automatic treatment.

Conclusion

I introduce a novel experimental design to isolate different causes of mistakes when attention

is costly. I test the extent to which choice data in this experiment satisfy the costly infor-
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Figure 9: Rate of dynamic inconsistency by round type
Notes: Conditional on entering the information collection stage, the rate of dynamic inconsistency is greater
in automatic rounds than in manual rounds across all prompt lengths. A Fisher exact test of the hypothesis
that rate(DI|Automatic) = rate(DI|Manual) is rejected with a p-value < 0.001, indicating significantly
more dynamic inconsistency in the automatic treatment.

mation representation axioms of Caplin and Dean (2015), and classify choices that would be

viewed as mistakes under full information. The results show that 73% of mistakes are due to

optimal inattention, 13% are caused by ineffective attention, 9% by dynamic inconsistency,

and 5% by suboptimal inattention. These findings suggest that optimal inattention can ex-

plain many mistakes, but even in a simple environment a substantial number of mistakes are

caused by errors at the information collecting and processing stages. There is no evidence of

convex time costs driving participants to quit the information collection stage early, but I did

find evidence that the automatic treatment led to more stopping the information collection

stage, and this suggests a possible role for choice agency in behavioral modeling. Researchers

studying choice domains with significant information requirements should consider modeling

or controlling for dynamic inconsistency, as it is an evident cause of mistakes.
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Appendices

Appendix A Deriving model axioms

This section derives the axiomatic conditions on experimental data - (Oa), (Oπ1), and (Oπ2)
- using the model and notation of Caplin and Dean (2015).

Each DM action a is a mapping from the state space Ω to the prize space X. Formally,
F = XΩ is the grand set of actions and F ≡ {A ⊂ F | |A| < ∞} is the grand set of decision
problems.

In each decision problem A the DM chooses an information structure π : Ω → ∆(Γ) which
is a stochastic mapping from objective states of the world to subjective signals. Subjective
signals are modeled using posterior beliefs γ ∈ Γ = ∆(Ω). Let Γ(π) denote the set of possible
posteriors when using information structure π. For a given information structure π, π(γ|ω)
is the probability of posterior belief γ conditional on the state being ω. Denote µ(ω) as the
prior belief the state is ω, and denote γ(ω) as the posterior belief.

Denote the gross payoff of using information structure π in decision problem A as G(A, π).
In this experiment context with three actions and two states, this gross benefit is defined as:

G(A, π) =
∑

γ∈Γ(π)

[ ∑
ω∈{R,B}

µ(ω)π(γ|ω)
][

max
a∈{red,blue,guess}

∑
ω∈{R,B}

γ(ω)u(a(ω))

]
(3)

The first term in brackets captures the prior probability of posterior γ given the information
structure chosen, and the second term in brackets captures the gross benefit of choosing the
optimal action given the posterior.

Caplin and Dean (2015) suppose that a DM has an information cost function K(), an
attention function πA which captures the DM’s choice of information structure in a given
decision problem A, and a choice function CA : Γ(πA) → ∆(A) which maps posterior beliefs
to action probabilities.

A state-dependent stochastic choice dataset (D,P ) is a collection of decision problems
D ⊂ F and a related set of state-dependent stochastic choice functions P = {PA}A∈D where
PA : Ω → ∆(A). Denote PA(a|ω) as the probability the DM chooses action a conditional on
state ω in decision problem A, and P̂A(a|ω) its experimental analogue.

Caplin and Dean (2015) state that a state-dependent stochastic choice dataset (D,P ) has
a costly information representation if there exists K(), πA(), CA() such that for all A ∈ D:

1. Information is optimal: πA ∈ argmaxπ∈Π{G(A, π)−K(π)}

2. Choices are optimal: Given CA(a|γ) > 0:∑
ω∈Ω γ(ω)u(a(ω)) ≥

∑
ω∈Ω γ(ω)u(b(ω)) for all b ∈ A

3. The data is matched: PA(a|ω) =
∑

γ∈Γ(πA) πA(γ|ω)CA(a|γ)

Caplin and Dean (2015) show a state-dependent stochastic choice dataset (D,P) has a
costly information representation if and only if it satisfies the testable criteria No Improving
Attention Cycles (NIAC) and No Improving Action Switches (NIAS). NIAC is a property of
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the entire dataset (D,P ) and requires that there could be no gross payoff improvement by
reassigning the chosen information structures across decision problems. NIAS is a property
of each decision problem, and requires that the observed actions chosen are optimal given
the revealed posterior beliefs of the DM.

NIAS violations

NIAS is a property of each decision problem, and requires that the observed actions chosen
are optimal given the revealed posterior beliefs of the DM. Given µ ∈ Γ, A ∈ D,PA ∈ P , and
a ∈ Supp(PA), the revealed posterior γ̄a

A ∈ Γ is defined by:

γ̄a
A(ω) ≡ Pr(ω|a chosen from A)

µ(ω)PA(a|ω)∑
ν∈Ω µ(ν)PA(a|ν)

One formulation of the NIAS condition is given by the equation labeled (3) in Caplin and
Dean (2015): For any A ∈ D, a ∈ Supp(PA), and b ∈ A:∑

ω∈Ω

γ̄a
A(ω)u(a(ω)) ≥

∑
ω∈Ω

γ̄a
A(ω)u(b(ω)) (4)

A violation of Condition (4) in an experimental dataset implies that the DM failed to
choose the optimal action given their posterior beliefs γ in some decision problem A. One
example of such a NIAS violation is when a posterior belief is strong enough that the optimal
action is a prediction (e.g., if γ(R) = 1, the optimal a = red) and the DM is observed to
choose one of the suboptimal actions a = blue or a = guess. I interpret such a violation of
NIAS as ineffective attention; the choice of π may have been ex ante optimal, but the DMs
use of the information was not effective.

NIAC violations

NIAC is a property of the entire dataset and requires that there could be no gross payoff
improvement by reassigning the chosen information structures across decision problems.

Caplin and Dean (2015) define the NIAC as follows: Given µ and u : X → R, dataset
(D,P ) satisfies NIAC if, for any set of decision problems A1, A2, ..., AJ ∈ D with AJ = A1:

J−1∑
j=1

G(Aj, π̄Aj) ≥
J−1∑
j=1

G(Aj, π̄Aj+1) (5)

A violation of the NIAC condition (5) in an experimental dataset would suggest that the
DM failed to allocate attention efficiently across decision problems.
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Costly information representation: translating to this experiment
context

In the simple context of this experiment the second term in (3) in brackets is equal to u(P )
when the state is known (γ(R) ∈ {0, 1}) and is equal to 1

2
u(P ) when the state is not known

(γ(R) = 1
2
). The space of posteriors is restricted by the two information structures (π0, πL

in each decision problem: Γ(π0) = {1
2
}, Γ(πL) = {0, 1

2
, 1} with πL(γ = 1

2
|ω) → 0 as the

information sample gets large. If a participant enters the attention stage with an intention
of waiting for a signal that changes the posterior away from the prior µ(R) = 1

2
, the gross

attention benefit of any decision problem A is drastically simplified to:

G(A, πL) = u(P ) if π = πL

G(A, π0) =
1

2
u(P ) if π = π0

By considering π0 (randomized guessing) as the default action, the gross marginal benefit of
paying attention in this context is:

G∗(A, πL) =
1

2
u(P ) (6)

A DM has a costly information representation (Caplin and Dean, 2015) if they both
(i) make ex ante optimal choices of attention structure given expected costs and benefits (
πA ∈ argmaxπ∈Π{G(A, π) − K(π)}), and (ii) their chosen action a is optimal given their
observed information (

∑
ω∈{R,B} γ(ω)u(a(ω)) ≥

∑
ω∈{R,B} γ(ω)u(b(ω)) for all b ∈ A). If a

participant behaves in this way, any ‘mistake’ must be case of optimal inattention, because
(i) rules out suboptimal inattention and (ii) rules out ineffective attention. These conditions
are difficult to test directly because the attention cost K() is unobserved. However in this
experiment context these conditions can be simplified to those used in the main text:

a = guess ⇐⇒ γ(R) =
1

2
(Oa)

a = red ⇐⇒ γ(R) = 1

a = blue ⇐⇒ γ(R) = 0

IPLT ≤ IP∗LT ∀P, P∗ ∈ P s.t P < P∗; ∀L ∈ L ∀T ∈ {automatic,manual} (Oπ1)

IPLT ≥ IPL∗T ∀L,L∗ ∈ L s.t L < L∗; ∀T ∈ {automatic,manual} (Oπ2)
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Appendix B Automatic treatment results

Figure 10: Choices By Stage: Automatic Treatment Rounds
Notes: Choices from 101 participants who each complete 5 paid rounds of the automatic treatment. Over

half (260/505) of choices would be interpreted as a mistake if complete information is assumed. An incorrect

prediction in Stage 3 is not possible in the automatic treatment.

Figure 11: Classifying Mistakes: Automatic Treatment Rounds
Notes: Of the 260 mistakes within automatic treatment rounds, 61% (158/260) are classified as optimal

inattention. Of the remaining 92 mistakes, 84 were cases of participants choosing to enter Stage 2 but then

choosing to guess before information arrived, interpreted as dynamic inconsistency. The remaining 8 mistakes

were cases of participants who missed information that would allow the computer to make a correct prediction

by failing to click in the 10-second window, interpreted as ineffective attention.
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Appendix C Convex time cost comparative statics

Recall the model of Caplin and Dean (2015) with attention cost K(π) and gross attention
benefit G(A, π) for decision problem A and information structure π. I now assume attention
cost to be convex in elapsed time t so that Kt(t, π) > 0 and Ktt(t, π) > 0. Under these
assumptions a DM faces a dynamic (rather than static) problem. At every t, the DM evaluates
the expected marginal gross attention benefit of continuing to collect information relative to
the marginal attention cost. First, consider whether the DM wants to continue for a full 10
seconds after each of t ∈ {0, 10, 20, ...} (as continuing for nine or fewer seconds has a gross
attention benefit of zero). The DM continues to collect information if and only if:

EU(continue) ≥EU(stop)

1

L

(
u(P )−K(t+ 10, π)

)
+

L− 1

L

(
1

2
u(P )−K(t+ 10, π)

)
≥1

2
u(P )−K(t, π)

1

L

(
1

2
u(P )

)
≥K(t+ 10, π)−K(t, π) (7)

The marginal benefit versus marginal cost condition in Inequality 7 captures the 1
L
probability

that the prompt arriving in 10 seconds reveals the state to improve the prize probability by
1
2
versus the marginal attention cost that will be incurred in the next 10 seconds.
Note that a DM who has collected information for t′ ∈ {1, 2, ..., 9} seconds since the

previous prompt at t ∈ {0, 10, 20, ...} chooses to continue if and only if 1
L
[1
2
u(P )] ≥ K(t +

10 − t′, π) −K(t + t′, π). Compared to Inequality 7, the marginal benefit of the next bit of
information is unchanged and the marginal cost of that information is lower at t + t′ than
at t, so it follows that any DM who chooses to continue at t ∈ {0, 10, 20, ...} also chooses to
continue at t + t′ for t′ ∈ {1, 2, ..., 9}. This simplifies the dynamic problem to a choice for
each t ∈ {0, 10, 20, ...}.

The left-hand side of Inequality 7 is fixed15 and the right-hand side is increasing in t,
implying the existence of some t̄ ∈ {0, 10, 20, ...} at which it is no longer acceptable to continue

collecting information: K(t̄+ 10, π)−K(t̄, π) ≥ 1
L

(
1
2
u(P )

)
≥ K(t̄, π)−K(t̄− 10, π).

Because the amount of time to reveal the state is random, participants incur heterogenous
time costs. Costs K() are convex in t, so if this convexity is a key driver of behavior I
would expect that a participant who stopped collecting information before revealing the state
(classified as DI) did so because they got unlucky draws and breached their t̄. Thus, convex
time costs imply that mean(t̄|πL, DI) = mean(t̄|πL, non-DI), which I call Comparative
Static 1 and test in Section 5.

If the variable over whichK() is convex is total experiment time and not round time, then I
would expect that participants spend less time collecting information in later rounds as more
participants breach their t̄. Thus, time costs that are convex over total experiment time imply
rate(DI|πL, Round r+x) > rate(DI|πL, Round r) ∀x ≥ 1, which I call Comparative Static
2 and test in Section 5.

15until the state is revealed, then the benefit of continuation is zero.
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Appendix D Experiment instructions

Participants sign on to a live Zoom meeting to complete an ID check and consent form.
Participants click through the screens below on their own devices as the experimenter reads
the instructions aloud, takes questions, and offers tech support. The Zoom meeting ends after
the instructions and participants have until 23:59 two days later to complete the experiment.
Participants can exit the experiment at any time and return with saved progress using a
unique link generated by oTree (Chen et al., 2016).
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